Aircore Corrector Modeling¶
Generating 3D field data and FieldMesh objectrs for aircore corrector magnets. There are two types of corrector coil shapes currently handled: rectangular and saddle shaped. For each type of corrector, the user can generate a FieldMesh object directly. The main function for doing this is: make_dipole_corrector_fieldmesh
. To use this function the user must provide a current $I$, the definition for the uniform 3D grid of x, y, z points, specified using xmin
, xmax
, nx
for each coordinate direction, and then the corrector geometry parameters specific to the type of corrector being modeled. See the two example below for a detailed description.
The default direction for correctors to kick is in the x-direction. However, correctors can be offset and rotated by including a position offset and a rotation matrix or an offset and three angles (pitch, yaw, roll).
Note: care must be taken not to evaluate fields at the location of the corrector current elements, as the fields diverge there.¶
from matplotlib import pyplot as plt
import numpy as np
from scipy.constants import mu_0, pi
from pmd_beamphysics.fields.corrector_modeling import make_dipole_corrector_fieldmesh
SADDLE COIL CORRECTOR¶
The saddle coil corrector is parameterized by:
- $R$ [m], radius in x-y plane
- $L$ [m], length in the z-direction,
- $\theta$ [rad], openining angle of the saddle arc, specifying the arc length of the curved sections: $s=R\theta$
- npts [int], number of straight line segments used to approximate the saddle arcs.
R = 2 * 2.54e-2 # 2" radius [m]
L = 0.1 # Length along z [m]
theta = np.pi / 2 # Opening angle [rad]
current = 1 # Current [Amp]
FM = make_dipole_corrector_fieldmesh(
current=current,
xmin=-R,
xmax=R,
nx=101,
ymin=-R,
ymax=R,
ny=102,
zmin=-5 * L / 2,
zmax=5 * L / 2,
nz=103,
mode="saddle",
R=R,
L=L,
theta=theta,
npts=20,
plot_wire=True,
)
FM.plot_onaxis("By")
FM.plot("By", y=0.0123)
FM.plot_onaxis(["Bx", "By", "Bz"])
FM = make_dipole_corrector_fieldmesh(
current=current,
xmin=-R,
xmax=R,
nx=101,
ymin=-R,
ymax=R,
ny=101,
zmin=-5 * L / 2,
zmax=5 * L / 2,
nz=101,
mode="saddle",
R=R,
L=L,
theta=theta,
npts=20,
plot_wire=True,
tilt=np.pi / 2,
)
FM.plot_onaxis(["Bx", "By", "Bz"])
RECTANGULAR COIL CORRECTOR¶
The rectangular coil corrector is defined by two rectangular coils separated in the x-direction and is parameterized by:
- $a$ [m], horizontal separation of to coils
- $h$ [m], height of coils (in y-direction)
- $b$ [m], length in coils (in z-direction),
a = 2 * 2.54e-2 # 2" pipe [m]
h = a # Square corrector
b = 0.1 # Length [m]
L = 0.1 # Length along z [m]
current = 1
FM = make_dipole_corrector_fieldmesh(
current=current,
xmin=-0.99 * a,
xmax=0.99 * a,
nx=101, # Mind the wires
ymin=-0.99 * h,
ymax=0.99 * h,
ny=101, # Mind the wires
zmin=-5 * L / 2,
zmax=+5 * L / 2,
nz=101,
mode="rectangular",
a=a,
b=b,
h=h,
plot_wire=True,
)
FM.plot(component="By", y=0)
FM.plot_onaxis(["Bx", "By", "Bz"])
FM = make_dipole_corrector_fieldmesh(
current=current,
xmin=-0.99 * h,
xmax=0.99 * h,
nx=101, # Mind the wires
ymin=-0.99 * a,
ymax=0.99 * a,
ny=101, # Mind the wires
zmin=-5 * L / 2,
zmax=+5 * L / 2,
nz=101,
mode="rectangular",
a=a,
b=b,
h=h,
plot_wire=True,
tilt=np.pi / 2,
)
FM.plot_onaxis(["Bx", "By", "Bz"])
THIN STRAIGHT WIRE¶
Users can generate a FieldMesh object storing fields from a thin straight wire segment by passing in the two points $\textbf{r}_1$ and $\textbf{r}_2$ defining the current element $Id\textbf{l} = Idl \frac{\textbf{r}_2 - \textbf{r}_1}{|\textbf{r}_2 - \textbf{r}_1|}$.
from pmd_beamphysics.fields.corrector_modeling import make_thin_straight_wire_fieldmesh
r1 = np.array([-0.75, 0, 0]) # Start point of the wire
r2 = np.array([+0.75, 0, 0]) # End point of the wire
FM = make_thin_straight_wire_fieldmesh(
r1,
r2,
xmin=-1,
xmax=1,
nx=250,
ymin=-0.25,
ymax=0.25,
ny=300,
zmin=-1,
zmax=1,
nz=350,
)
FM.plot(component="Bz", z=0)
Helper Functions¶
All of the corrector models here make use of one main helper function which computes the fields from a thin, straight current element exactly using the analytic solution from the Biot-Savart law:
$\textbf{B} = \frac{\mu_0I}{4\pi R}\left(\frac{x_2}{\sqrt{x_2^2+R^2}}-\frac{x_1}{\sqrt{x_1^2 + R^2}}\right)\hat\phi$
Here $R$ is the minimal distance from a line in 3d space which containts the current segment and the observation point $\textbf{r}$, and $x_1$, and $x_2$. The observation point and the current segment form a plane, in which one can specifcy a coordinate system so that the x-coordinate runs along the current segment and x=0 specifies the intersection point of the line used to define $R$. In this coordinate system $x_1$ and $x_2$ are the start and end points of the wire. $\hat\phi$ is the unit vector normal to the plane.
Below give examples how how to use this function as well as other functions used to build up the corrector models.
from pmd_beamphysics.fields.corrector_modeling import bfield_from_thin_straight_wire
from pmd_beamphysics.fields.corrector_modeling import bfield_from_thin_rectangular_coil
from pmd_beamphysics.fields.corrector_modeling import (
bfield_from_thin_rectangular_corrector,
)
from pmd_beamphysics.fields.corrector_modeling import bfield_from_thin_wire_arc
from pmd_beamphysics.fields.corrector_modeling import bfield_from_thin_saddle_coil
from pmd_beamphysics.fields.corrector_modeling import bfield_from_thin_saddle_corrector
# Example usage with a grid of points
current = 1
x = np.linspace(-1, 1, 250)
y = np.linspace(-0.25, 0.25, 300)
z = np.linspace(-1, 1, 150)
# Create meshgrid
X, Y, Z = np.meshgrid(x, y, z, indexing="ij")
# Define wire endpoints and current
p1 = np.array([-0.75, 0, 0]) # Start point of the wire
p2 = np.array([+0.75, 0, 0]) # End point of the wire
# Compute the magnetic field over the grid
Bx, By, Bz = bfield_from_thin_straight_wire(X, Y, Z, p1, p2, current, plot_wire=True)
ax = plt.gca()
ax.set_xlim([-1, 1])
(-1.0, 1.0)
plt.imshow(Bz[:, :, 75], extent=[y[0], y[-1], x[0], x[-1]], origin="lower")
plt.xlabel("y (m)")
plt.ylabel("x (m)")
plt.colorbar(label=r"$B_z(z=0)$ (T)")
<matplotlib.colorbar.Colorbar at 0x7f289e7f2990>
Tests¶
- In the limit that the length of the wire $L\rightarrow\infty$, then $B_z(x=0, y=R, z=0)\rightarrow \frac{\mu_0 I}{2\pi R}$
current = 1
R = 1
L = 1000
p1 = [-L / 2, 0, 0]
p2 = [+L / 2, 0, 0]
P = [0, R, 0]
x = np.linspace(-L / 2, L / 2, 11)
y = np.linspace(0.1, R, 10) # Makes sure not to evluate on the wire
z = np.linspace(0, R, 10)
X, Y, Z = np.meshgrid(x, y, z)
_, _, Bz = bfield_from_thin_straight_wire(X, Y, Z, p1, p2, current)
B0 = Bz[(X == 0) & (Y == R) & (Z == 0)]
assert np.isclose(
mu_0 * current / 2 / pi / R, B0
), "Wire expression does not reproduce infinite limit"
Fields from a rectangular coil in the X-Z plane¶
Here we create basically half of a rectangular corrector.
a = 2 * 2.54e-2 # Assume 2" pipe
h = a
b = 0.1
x = np.linspace(-2 * a, 2 * a, 200)
y = np.linspace(-2 * a, 2 * a, 201)
z = np.linspace(-3 * b, 3 * b, 200)
X, Y, Z = np.meshgrid(x, y, z, indexing="ij")
BxCoil, ByCoil, BzCoil = bfield_from_thin_rectangular_coil(
X, Y, Z, a, b, h, current, plot_wire=True
)
# ax = plt.gca()
# ax.set_xlim([-2*a, 2*a])
# ax.set_ylim([-2*b, 2*b])
indx = np.argmin(np.abs(x))
indy = np.argmin(np.abs(y))
plt.imshow(ByCoil[:, indy, :], extent=[z[0], z[-1], x[0], x[-1]], origin="lower")
plt.xlabel("z (m)")
plt.ylabel("x (m)")
plt.colorbar(label=r"$B_y(x=y=0,z)$ (T)")
<matplotlib.colorbar.Colorbar at 0x7f289d570e10>
plt.plot(z, BxCoil[indx, indy, :])
plt.plot(z, ByCoil[indx, indy, :])
plt.plot(z, BzCoil[indx, indy, :])
plt.xlabel("z (m)")
plt.ylabel(r"$B$ (T)")
plt.legend([r"$B_x(x=y=0,z)$", r"$B_y(x=y=0,z)$", r"$B_z(x=y=0,z)$"])
<matplotlib.legend.Legend at 0x7f2898525810>
Field from rectangular corrector (two coils)¶
a = 2 * 2.54e-2 # Assume 2" pipe
h = a
b = 0.1
BxCor, ByCor, BzCor = bfield_from_thin_rectangular_corrector(
X, Y, Z, a, b, h, current, plot_wire=True
)
indx = np.argmin(np.abs(x))
indy = np.argmin(np.abs(y))
plt.imshow(ByCor[:, indy, :], extent=[z[0], z[-1], x[0], x[-1]], origin="lower")
plt.xlabel("z (m)")
plt.ylabel("x (m)")
plt.colorbar(label=r"$B_y(x=y=0,z)$ (T)")
<matplotlib.colorbar.Colorbar at 0x7f28985e8b90>
plt.plot(z, BxCor[indx, indy, :])
plt.plot(z, ByCor[indx, indy, :])
plt.plot(z, BzCor[indx, indy, :])
plt.xlabel("z (m)")
plt.ylabel(r"$B$ (T)")
plt.legend([r"$B_x(x=y=0,z)$", r"$B_y(x=y=0,z)$", r"$B_z(x=y=0,z)$"])
<matplotlib.legend.Legend at 0x7f289fd38cd0>
Field from segmented arc¶
h = 0
R = 1
theta = np.pi
x = np.linspace(-1, 1, 200)
y = np.linspace(-0.2, 1, 200)
z = np.linspace(-1, 1, 150)
X, Y, Z = np.meshgrid(x, y, z, indexing="ij")
Bx, By, Bz = bfield_from_thin_wire_arc(
X, Y, Z, 0, R, theta, npts=15, current=1, plot_wire=True
)
indz = np.argmin(np.abs(z))
plt.imshow(Bz[:, :, indz], extent=[y[0], y[-1], x[0], x[-1]], origin="lower")
plt.xlabel("y (m)")
plt.ylabel("x (m)")
plt.colorbar(label=r"$B_z(z=0)$ (T)")
<matplotlib.colorbar.Colorbar at 0x7f289c36ae90>
h = 0
R = 1
L = 2
theta = np.pi
x = np.linspace(-2, 2, 100)
y = np.linspace(-2, 2, 100)
z = np.linspace(-3, 3, 100)
X, Y, Z = np.meshgrid(x, y, z, indexing="ij")
Bx, By, Bz = bfield_from_thin_saddle_coil(
X, Y, Z, L, R, theta, npts=5, current=1, plot_wire=True
)
indz = np.argmin(np.abs(z))
plt.imshow(Bz[:, :, indz], extent=[y[0], y[-1], x[0], x[-1]], origin="lower")
plt.xlabel("y (m)")
plt.ylabel("x (m)")
plt.colorbar(label=r"$B_z(z=0)$ (T)")
<matplotlib.colorbar.Colorbar at 0x7f28a020df90>
R = 2 * 2.54e-2
L = 0.1
theta = 2 * np.pi / 3
x = np.linspace(-R, R, 101)
y = np.linspace(-R, R, 101)
z = np.linspace(-5 * L / 2, 5 * L / 2, 301)
X, Y, Z = np.meshgrid(x, y, z, indexing="ij")
BxS, ByS, BzS = bfield_from_thin_saddle_corrector(
X, Y, Z, L, R, theta, npts=20, current=1, plot_wire=True
)
indx = np.argmin(np.abs(x))
indy = np.argmin(np.abs(y))
plt.imshow(ByS[:, indy, :], extent=[z[0], z[-1], x[0], x[-1]], origin="lower")
plt.xlabel("z (m)")
plt.ylabel("x (m)")
plt.colorbar(label=r"$B_y(x=y=0,z)$ (T)")
<matplotlib.colorbar.Colorbar at 0x7f289fbee850>
plt.plot(z, BxS[indx, indy, :])
plt.plot(z, ByS[indx, indy, :])
plt.plot(z, BzS[indx, indy, :])
plt.xlabel("z (m)")
plt.ylabel(r"$B$ (T)")
plt.legend([r"$B_x(x=y=0,z)$", r"$B_y(x=y=0,z)$", r"$B_z(x=y=0,z)$"])
<matplotlib.legend.Legend at 0x7f289c3db610>