FieldMesh Examples¶
from pmd_beamphysics import FieldMesh
import numpy as np
# Nicer plotting
import matplotlib.pyplot as plt
FM = FieldMesh("../data/solenoid.h5")
FM.geometry
'cylindrical'
Built-in plotting:
FM.plot("B", aspect="equal")
On-axis field plotting
FM.plot_onaxis()
Off-axis plotting can be done with the axis_values
method to get interpolated values, and manually plot:
z, Bz = FM.axis_values("z", "abs_B", r=0.04)
plt.plot(z, Bz)
plt.xlabel(r"$z$ (m)")
plt.ylabel(r"$\left|B\right|$ (T)")
plt.show()
Interpolation¶
Arbirtrary points can also be interpolated. Here is the value of $B_z$ at r=0.01
, theta=0
, z=0
:
FM.interpolate("Bz", (0.01, 0, 0))
np.float64(1.0246914678449792)
FM.interpolate("Bz", [(0, 0, z) for z in np.linspace(-0.1, 0.1, 3)])
array([4.10454985e-03, 1.00000000e+00, 3.31380794e-04])
Note that the points are orderd by the axis labels:
FM.axis_labels
('r', 'theta', 'z')
Internal data¶
attributes and components
FM.attrs, FM.components.keys()
({'eleAnchorPt': 'beginning', 'gridGeometry': 'cylindrical', 'axisLabels': array(['r', 'theta', 'z'], dtype='<U5'), 'gridLowerBound': array([0, 1, 0]), 'gridOriginOffset': array([ 0. , 0. , -0.1]), 'gridSpacing': array([0.001, 0. , 0.001]), 'gridSize': array([101, 1, 201]), 'harmonic': np.int64(0), 'fundamentalFrequency': np.int64(0), 'RFphase': 0, 'fieldScale': 1.0}, dict_keys(['magneticField/z', 'magneticField/r']))
Properties¶
Convenient access to these
FM.shape
(np.int64(101), np.int64(1), np.int64(201))
FM.frequency
0
Coordinate vectors: .r
, .theta
, .z
, etc.
FM.r, FM.dr
(array([0. , 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01 , 0.011, 0.012, 0.013, 0.014, 0.015, 0.016, 0.017, 0.018, 0.019, 0.02 , 0.021, 0.022, 0.023, 0.024, 0.025, 0.026, 0.027, 0.028, 0.029, 0.03 , 0.031, 0.032, 0.033, 0.034, 0.035, 0.036, 0.037, 0.038, 0.039, 0.04 , 0.041, 0.042, 0.043, 0.044, 0.045, 0.046, 0.047, 0.048, 0.049, 0.05 , 0.051, 0.052, 0.053, 0.054, 0.055, 0.056, 0.057, 0.058, 0.059, 0.06 , 0.061, 0.062, 0.063, 0.064, 0.065, 0.066, 0.067, 0.068, 0.069, 0.07 , 0.071, 0.072, 0.073, 0.074, 0.075, 0.076, 0.077, 0.078, 0.079, 0.08 , 0.081, 0.082, 0.083, 0.084, 0.085, 0.086, 0.087, 0.088, 0.089, 0.09 , 0.091, 0.092, 0.093, 0.094, 0.095, 0.096, 0.097, 0.098, 0.099, 0.1 ]), np.float64(0.001))
Grid info
FM.mins, FM.maxs, FM.deltas
(array([ 0. , 0. , -0.1]), array([0.1, 0. , 0.1]), array([0.001, 0. , 0.001]))
FM.zmin, FM.zmax
(np.float64(-0.1), np.float64(0.1))
Convenient setting
zmin_save = FM.zmin
FM.zmin = 0
print(FM.zmin, FM.zmax)
FM.zmin = zmin_save
0.0 0.2
Convenient logicals
FM.is_static, FM.is_pure_magnetic, FM.is_pure_magnetic, FM.is_pure_electric
(np.True_, True, True, False)
Components¶
FM.components
{'magneticField/z': array([[[ 4.10454985e-03, 4.31040451e-03, 4.52986744e-03, ..., 4.67468517e-04, 3.93505841e-04, 3.31380794e-04]], [[ 4.10132316e-03, 4.30698128e-03, 4.52613784e-03, ..., 4.63910019e-04, 3.90463457e-04, 3.28826095e-04]], [[ 4.09178241e-03, 4.29666227e-03, 4.51500745e-03, ..., 4.53304832e-04, 3.81497195e-04, 3.21252672e-04]], ..., [[-8.55276742e-05, -9.25454620e-05, -9.97134392e-05, ..., -1.67910069e-13, -1.66617291e-13, -1.69112101e-13]], [[-8.66606075e-05, -9.34605759e-05, -1.00393739e-04, ..., -1.63746446e-13, -1.62385457e-13, -1.63975660e-13]], [[-8.76493773e-05, -9.42325632e-05, -1.00947206e-04, ..., -1.59165583e-13, -1.57653026e-13, -1.58633209e-13]]], shape=(101, 1, 201)), 'magneticField/r': array([[[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], [[-9.96833640e-05, -1.06224487e-04, -1.13203127e-04, ..., 4.01781064e-05, 3.37384918e-05, 2.82880488e-05]], [[-1.99034573e-04, -2.12052909e-04, -2.25955469e-04, ..., 7.94909429e-05, 6.67047656e-05, 5.59040132e-05]], ..., [[-3.28171418e-04, -3.29256623e-04, -3.30141629e-04, ..., 5.98175517e-14, 5.84734577e-14, 5.07218297e-14]], [[-3.18048731e-04, -3.18985999e-04, -3.19728362e-04, ..., 5.74787071e-14, 5.71575012e-14, 5.06326785e-14]], [[-3.08270029e-04, -3.09070567e-04, -3.09682173e-04, ..., 5.47143752e-14, 5.54052993e-14, 4.98595495e-14]]], shape=(101, 1, 201))}
Convenient access to component data
FM.Bz is FM["magneticField/z"]
True
Setting .scale will set the underlying attribute
FM.scale = 2
FM.attrs["fieldScale"], FM.scale
(2, 2)
Raw components accessed by their full key
FM["magneticField/z"]
array([[[ 4.10454985e-03, 4.31040451e-03, 4.52986744e-03, ..., 4.67468517e-04, 3.93505841e-04, 3.31380794e-04]], [[ 4.10132316e-03, 4.30698128e-03, 4.52613784e-03, ..., 4.63910019e-04, 3.90463457e-04, 3.28826095e-04]], [[ 4.09178241e-03, 4.29666227e-03, 4.51500745e-03, ..., 4.53304832e-04, 3.81497195e-04, 3.21252672e-04]], ..., [[-8.55276742e-05, -9.25454620e-05, -9.97134392e-05, ..., -1.67910069e-13, -1.66617291e-13, -1.69112101e-13]], [[-8.66606075e-05, -9.34605759e-05, -1.00393739e-04, ..., -1.63746446e-13, -1.62385457e-13, -1.63975660e-13]], [[-8.76493773e-05, -9.42325632e-05, -1.00947206e-04, ..., -1.59165583e-13, -1.57653026e-13, -1.58633209e-13]]], shape=(101, 1, 201))
Scaled component accessed by shorter keys, e.g.
FM["Bz"]
array([[[ 8.20909970e-03, 8.62080901e-03, 9.05973488e-03, ..., 9.34937033e-04, 7.87011682e-04, 6.62761588e-04]], [[ 8.20264631e-03, 8.61396257e-03, 9.05227569e-03, ..., 9.27820038e-04, 7.80926913e-04, 6.57652189e-04]], [[ 8.18356483e-03, 8.59332454e-03, 9.03001490e-03, ..., 9.06609663e-04, 7.62994390e-04, 6.42505344e-04]], ..., [[-1.71055348e-04, -1.85090924e-04, -1.99426878e-04, ..., -3.35820138e-13, -3.33234581e-13, -3.38224202e-13]], [[-1.73321215e-04, -1.86921152e-04, -2.00787478e-04, ..., -3.27492892e-13, -3.24770914e-13, -3.27951319e-13]], [[-1.75298755e-04, -1.88465126e-04, -2.01894411e-04, ..., -3.18331166e-13, -3.15306051e-13, -3.17266417e-13]]], shape=(101, 1, 201))
FM["magneticField/z"].max(), FM["Bz"].max()
(np.float64(2.150106838829148), np.float64(4.300213677658296))
Oscillating fields¶
Oscillating fields have .harmonic > 0
FM = FieldMesh("../data/rfgun.h5")
FM.plot("re_E", aspect="equal", figsize=(12, 4))
The magnetic field is out of phase, so use the im_
syntax:
FM.plot("im_Btheta", aspect="equal", figsize=(12, 4))
Max on-axis field:
np.abs(FM.Ez[0, 0, :]).max()
np.float64(1.0)
Verify the oscillation¶
Complex fields oscillate as $e^{-i\omega t}$. For TM fields, the spatial components $E_z$ and $B_\theta$ near the axis
$\Re E_{z} = -\frac{r}{2}\frac{\omega}{c^2} \Im B_\theta$
c_light = 299792458.0
dr = FM.dr
omega = FM.frequency * 2 * np.pi
# Check the first off-axis grid points
z0 = FM.z
Ez0 = np.real(FM.Ez[0, 0, :])
B1 = -np.imag(FM.Btheta[1, 0, :])
plt.plot(z0, Ez0, label=r"$\Re \left( E_z\right)$")
plt.plot(
z0,
B1 * 2 / dr * c_light**2 / omega,
"--",
label=r"$-\frac{r}{2}\frac{\omega}{c^2} \Im\left(B_\theta\right)$",
)
plt.ylabel("field (V/m)")
plt.xlabel("z (m)")
plt.legend()
plt.title(r"Complex field oscillation")
Text(0.5, 1.0, 'Complex field oscillation')
Units¶
FM.units("Bz")
pmd_unit('T', 1, (0, 1, -2, -1, 0, 0, 0))
This also works:
FM.units("abs_Ez")
pmd_unit('V/m', 1, (1, 1, -3, -1, 0, 0, 0))
Write¶
FM.write("rfgun2.h5")
Read back and make sure the data are the same.
FM2 = FieldMesh("rfgun2.h5")
assert FM == FM2
Write to open HDF5 file and test reload:
import h5py
with h5py.File("test.h5", "w") as h5:
FM.write(h5, name="myfield")
FM2 = FieldMesh(h5=h5["myfield"])
assert FM == FM2
Write Astra 1D¶
Astra primarily uses simple 1D (on-axis) fieldmaps.
FM.write_astra_1d("astra_1d.dat")
Another method returns the array data with some annotation
FM.to_astra_1d()
{'attrs': {'type': 'astra_1d'}, 'data': array([[ 0.00000000e+00, -1.00000000e+00], [ 2.50000000e-04, -9.99967412e-01], [ 5.00000000e-04, -9.99865106e-01], ..., [ 1.29500000e-01, 1.45678834e-04], [ 1.29750000e-01, 1.40392476e-04], [ 1.30000000e-01, 1.35399670e-04]], shape=(521, 2))}
Write Impact-T¶
Impact-T uses a particular Fourier representation for 1D fields. These routines form this data.
idata = FM.to_impact_solrf()
idata.keys()
dict_keys(['line', 'rfdata', 'ele', 'fmap'])
This is an element that can be used with LUME-Impact
idata["ele"]
{'L': np.float64(0.13), 'type': 'solrf', 'zedge': np.int64(0), 'rf_field_scale': np.int64(1), 'rf_frequency': np.float64(2855998506.158), 'theta0_deg': 0.0, 'filename': 'rfdata666', 'radius': 0.15, 'x_offset': 0, 'y_offset': 0, 'x_rotation': 0.0, 'y_rotation': 0.0, 'z_rotation': 0.0, 'solenoid_field_scale': np.int64(0), 'name': 'solrf_666', 's': np.float64(0.13)}
This is a line that would be used
idata["line"]
'0.13 0 0 105 0 1 2855998506.158 0.0 666 0.15 0 0 0 0 0 0 /name:solrf_666'
Data that would be written to the rfdata999 file
idata["rfdata"]
array([ 5.90000000e+01, -1.30000000e-01, 1.30000000e-01, 2.60000000e-01, 2.38794165e-01, -3.04717859e-01, -3.56926831e-17, -7.49524991e-01, 7.29753328e-18, -2.59757413e-01, -4.68937899e-17, 1.27535902e-01, -6.30755527e-17, 4.49651550e-02, -1.49234509e-16, 4.67567146e-03, -1.74265243e-16, 3.32025307e-02, 6.08199268e-17, -2.74904837e-03, 1.81697659e-16, -1.55710320e-02, -1.45475359e-16, 2.64475111e-03, -1.20376479e-16, 9.51814907e-04, 2.52133666e-16, -2.68547441e-03, 4.07323339e-16, 1.50824509e-03, 3.51376926e-16, 7.16574075e-04, 1.71392948e-16, -9.25573616e-04, -1.42917735e-16, 2.40084183e-04, -1.19272642e-16, 2.61495768e-04, 1.87867359e-16, -2.41687337e-04, -9.72891282e-18, 6.22859548e-05, -3.09382521e-16, 7.85163760e-05, -2.59194056e-16, -8.56926328e-05, -2.56768407e-16, 2.38418521e-06, -2.89351931e-16, 2.84696849e-05, -1.77696470e-16, -2.10693774e-05, -8.56616099e-18, 4.74764623e-06, -1.26336157e-16, 9.74703896e-06, -1.86248124e-16, -6.17509459e-06, -2.08540055e-16, -1.04844029e-06, -1.86006363e-16, 3.01586958e-06, 1.90371674e-16, 1.00000000e+00, -1.30000000e-01, 1.30000000e-01, 2.60000000e-01, 0.00000000e+00])
This is the fieldmap that makes that data:
fmap = idata["fmap"]
fmap.keys()
dict_keys(['info', 'data', 'field'])
Additional info:
fmap["info"]
{'format': 'solrf', 'Ez_scale': np.float64(1.0), 'Ez_err': np.float64(7.68588630296298e-08), 'Bz_scale': np.float64(0.0), 'Bz_err': 0, 'zmin': np.float64(-0.13), 'zmax': np.float64(0.13)}
from pmd_beamphysics.interfaces.impact import fourier_field_reconsruction
L = np.ptp(z0)
zlist = np.linspace(0, L, len(Ez0))
fcoefs = fmap["field"]["Ez"]["fourier_coefficients"]
reconstructed_Ez0 = np.array(
[fourier_field_reconsruction(z, fcoefs, z0=-L, zlen=2 * L) for z in zlist]
)
fig, ax = plt.subplots()
ax2 = ax.twinx()
ax.plot(z0, Ez0, label=r"$\Re \left( E_z\right)$", color="black")
ax.plot(
zlist,
reconstructed_Ez0,
"--",
label="reconstructed",
color="red",
)
ax2.plot(
zlist, abs(reconstructed_Ez0 / Ez0 - 1), "--", label="reconstructed", color="black"
)
ax2.set_ylabel("relative error")
ax2.set_yscale("log")
ax.set_ylabel("field (V/m)")
ax.set_xlabel("z (m)")
plt.legend()
<matplotlib.legend.Legend at 0x7f4097c9ec10>
This function can also be used to study the reconstruction error as a function of the number of coefficients:
ncoefs = np.arange(10, FM2.shape[2] // 2)
errs = np.array(
[
FM2.to_impact_solrf(n_coef=n, zmirror=True)["fmap"]["info"]["Ez_err"]
for n in ncoefs
]
)
fig, ax = plt.subplots()
ax.plot(ncoefs, errs, marker=".", color="black")
ax.set_xlabel("n_coef")
ax.set_ylabel("Ez reconstruction error")
ax.set_yscale("log")
Write GPT¶
# FM.write_gpt('solenoid.gdf', asci2gdf_bin='$ASCI2GDF_BIN', verbose=True)
FM.write_gpt("rfgun_for_gpt.txt", verbose=True)
ASCII field data written. Convert to GDF using: asci2df -o field.gdf rfgun_for_gpt.txt
'rfgun_for_gpt.txt'
FM.write_superfish("rfgun2.t7")
'rfgun2.t7'
Read Superfish¶
Proper Superfish T7 can also be read.
FM3 = FieldMesh.from_superfish("rfgun2.t7")
FM3
<FieldMesh with cylindrical geometry and (61, 1, 521) shape at 0x7f40c40ef100>
help(FieldMesh.from_superfish)
Help on method read_superfish_t7 in module pmd_beamphysics.interfaces.superfish: read_superfish_t7(type=None, geometry='cylindrical') class method of pmd_beamphysics.fields.fieldmesh.FieldMesh Parses a T7 file written by Posson/Superfish. Fish or Poisson T7 are automatically detected according to the second line. For Poisson problems, the type must be specified. Superfish fields oscillate as: Er, Ez ~ cos(wt) Hphi ~ -sin(wt) For complex fields oscillating as e^-iwt Re(Ex*e^-iwt) ~ cos Re(-iB*e^-iwt) ~ -sin and therefore B = -i * mu_0 * H_phi is the complex magnetic field in Tesla Parameters: ---------- filename: str T7 filename to read type: str, optional For Poisson files, required to be 'electric' or 'magnetic'. Not used for Fish files geometry: str, optional field geometry, currently required to be the default: 'cylindrical' Returns: ------- fieldmesh_data: dict of dicts: attrs components A FieldMesh object is instantiated from this as: FieldMesh(data=fieldmesh_data)
Note that writing the ASCII and conversions alter the data slightly
FM == FM3
False
But the data are all close:
for c in FM.components:
close = np.allclose(FM.components[c], FM3.components[c])
equal = np.all(FM.components[c] == FM3.components[c])
print(c, equal, close)
electricField/z False True electricField/r False True magneticField/theta False True
Read ANSYS¶
Read ANSYS E and H ASCII files:
FM3D = FieldMesh.from_ansys_ascii_3d(
efile="../data/ansys_rfgun_2856MHz_E.dat",
hfile="../data/ansys_rfgun_2856MHz_H.dat",
frequency=2856e6,
)
FM3D
<FieldMesh with rectangular geometry and (3, 3, 457) shape at 0x7f409ff2d910>
FM3D.attrs
{'eleAnchorPt': 'beginning', 'gridGeometry': 'rectangular', 'axisLabels': ('x', 'y', 'z'), 'gridLowerBound': (0, 0, 0), 'gridOriginOffset': (np.float64(-0.001), np.float64(-0.001), np.float64(0.0)), 'gridSpacing': (np.float64(0.001), np.float64(0.001), np.float64(0.00025)), 'gridSize': (3, 3, 457), 'harmonic': 1, 'fundamentalFrequency': 2856000000.0, 'RFphase': 0, 'fieldScale': 1.0}
This can then be written:
FM3D.write("../data/rfgun_rectangular.h5")
The y=0 plane can be extracted to be used as cylindrically symmetric data:
FM2D = FM3D.to_cylindrical()
FM2D
<FieldMesh with cylindrical geometry and (2, 1, 457) shape at 0x7f4097c0e690>
Cleanup¶
import os
for file in ("test.h5", "astra_1d.dat", "rfgun_for_gpt.txt", "rfgun2.h5", "rfgun2.t7"):
os.remove(file)