Field Phasing and Scaling (Autophase)¶
In [1]:
Copied!
# Useful for debugging
%load_ext autoreload
%autoreload 2
# Nicer plotting
import matplotlib.pyplot as plt
%matplotlib inline
%config InlineBackend.figure_format = 'retina'
import numpy as np
# Useful for debugging
%load_ext autoreload
%autoreload 2
# Nicer plotting
import matplotlib.pyplot as plt
%matplotlib inline
%config InlineBackend.figure_format = 'retina'
import numpy as np
Get field¶
In [2]:
Copied!
from pmd_beamphysics import FieldMesh
from pmd_beamphysics import FieldMesh
In [3]:
Copied!
FM = FieldMesh("../data/rfgun.h5")
FM.plot(aspect="equal", figsize=(12, 8))
FM = FieldMesh("../data/rfgun.h5")
FM.plot(aspect="equal", figsize=(12, 8))
In [4]:
Copied!
# On-axis field
z0 = FM.coord_vec("z")
Ez0 = FM.Ez[0, 0, :] # this is complex
plt.plot(z0, np.real(Ez0))
# On-axis field
z0 = FM.coord_vec("z")
Ez0 = FM.Ez[0, 0, :] # this is complex
plt.plot(z0, np.real(Ez0))
Out[4]:
[<matplotlib.lines.Line2D at 0x7fdd0ed65590>]
v=c voltage and phase¶
In [5]:
Copied!
from pmd_beamphysics.fields.analysis import accelerating_voltage_and_phase
from pmd_beamphysics.fields.analysis import accelerating_voltage_and_phase
In [6]:
Copied!
?accelerating_voltage_and_phase
?accelerating_voltage_and_phase
In [7]:
Copied!
V0, phase0 = accelerating_voltage_and_phase(z0, -Ez0 * 120e6, FM.frequency)
V0, (phase0 * 180 / np.pi) % 360
V0, phase0 = accelerating_voltage_and_phase(z0, -Ez0 * 120e6, FM.frequency)
V0, (phase0 * 180 / np.pi) % 360
Out[7]:
(np.float64(5795904.446882587), np.float64(322.1355626180106))
Tracking¶
Equations of motion:
$\frac{dz}{dt} = \frac{pc}{\sqrt{(pc)^2 + m^2 c^4)}} c$
$\frac{dp}{dt} = q E_z $
$E_z = \Re f(z) \exp(-i \omega t) $
In [8]:
Copied!
from pmd_beamphysics.fields.analysis import track_field_1d
from pmd_beamphysics.units import mec2
from pmd_beamphysics.fields.analysis import track_field_1d
from pmd_beamphysics.units import mec2
In [9]:
Copied!
?track_field_1d
?track_field_1d
In [10]:
Copied!
Z = FM.coord_vec("z")
E = FM.Ez[0, 0, :] * np.exp(1j * 2 * np.pi / 360 * 0) * 120e6
# Final z (m) and pz (eV/c)
track_field_1d(Z, E, FM.frequency, pz0=0, t0=0)
Z = FM.coord_vec("z")
E = FM.Ez[0, 0, :] * np.exp(1j * 2 * np.pi / 360 * 0) * 120e6
# Final z (m) and pz (eV/c)
track_field_1d(Z, E, FM.frequency, pz0=0, t0=0)
Out[10]:
(np.float64(0.1299999997988055), np.float64(3893319.475677489), np.float64(4.5305106998632873e-10))
In [11]:
Copied!
# Use debug mode to see the actual track
sol = track_field_1d(
Z, E, FM.frequency, pz0=0, t0=0, debug=True, max_step=1 / FM.frequency / 100
)
# Use debug mode to see the actual track
sol = track_field_1d(
Z, E, FM.frequency, pz0=0, t0=0, debug=True, max_step=1 / FM.frequency / 100
)
In [12]:
Copied!
# Plot the track
fig, ax = plt.subplots()
ax2 = ax.twinx()
ax.set_xlabel("f*t")
ax.set_ylabel("z (m)")
ax2.set_ylabel("KE (MeV)")
ax.plot(sol.t * FM.frequency, sol.y[0])
ax2.plot(sol.t * FM.frequency, (np.hypot(sol.y[1], mec2) - mec2) / 1e6, color="red")
# Plot the track
fig, ax = plt.subplots()
ax2 = ax.twinx()
ax.set_xlabel("f*t")
ax.set_ylabel("z (m)")
ax2.set_ylabel("KE (MeV)")
ax.plot(sol.t * FM.frequency, sol.y[0])
ax2.plot(sol.t * FM.frequency, (np.hypot(sol.y[1], mec2) - mec2) / 1e6, color="red")
Out[12]:
[<matplotlib.lines.Line2D at 0x7fdd1731cb90>]
Autophase¶
In [13]:
Copied!
from pmd_beamphysics.fields.analysis import autophase_field
from pmd_beamphysics.fields.analysis import autophase_field
In [14]:
Copied!
phase_deg1, pz1 = autophase_field(FM, pz0=0, scale=120e6, verbose=True)
phase_deg1, pz1
phase_deg1, pz1 = autophase_field(FM, pz0=0, scale=120e6, verbose=True)
phase_deg1, pz1
v=c voltage: 5795904.446882587 V, phase: -37.86443738198939 deg iterations: 32 function calls: 36
Out[14]:
(np.float64(304.33738105753935), np.float64(6234115.092377965))
In [15]:
Copied!
# Use debug mode to visualize. This returns the phasiing function
phase_f = autophase_field(FM, pz0=0, scale=120e6, debug=True)
phase_f(304.3348289439232)
# Use debug mode to visualize. This returns the phasiing function
phase_f = autophase_field(FM, pz0=0, scale=120e6, debug=True)
phase_f(304.3348289439232)
Out[15]:
np.float64(6234115.072277903)
In [16]:
Copied!
plist = np.linspace(280, 330, 100)
pzlist = np.array([phase_f(p) for p in plist])
plt.plot(plist, pzlist / 1e6)
plt.scatter(phase_deg1, pz1 / 1e6, color="red")
plt.xlabel("phase (deg)")
plt.ylabel("pz (MeV/c)")
plist = np.linspace(280, 330, 100)
pzlist = np.array([phase_f(p) for p in plist])
plt.plot(plist, pzlist / 1e6)
plt.scatter(phase_deg1, pz1 / 1e6, color="red")
plt.xlabel("phase (deg)")
plt.ylabel("pz (MeV/c)")
Out[16]:
Text(0, 0.5, 'pz (MeV/c)')
Autophase and Scale¶
In [17]:
Copied!
from pmd_beamphysics.fields.analysis import autophase_and_scale_field
?autophase_and_scale_field
from pmd_beamphysics.fields.analysis import autophase_and_scale_field
?autophase_and_scale_field
In [18]:
Copied!
phase_deg2, scale2 = autophase_and_scale_field(FM, 6e6, pz0=0, verbose=True)
phase_deg2, scale2
phase_deg2, scale2 = autophase_and_scale_field(FM, 6e6, pz0=0, verbose=True)
phase_deg2, scale2
v=c voltage: 0.04829920372402156 V, phase: -37.86443738198939 deg Pass 1 delta energy: 6000000.218936331 at phase 304.9881638246764 deg
Pass 2 delta energy: 5999999.999993903 at phase 305.150346249405 deg
Out[18]:
(np.float64(305.150346249405), 125274654.45329198)
In [19]:
Copied!
# Use debug mode to visualize. This returns the phasing function
ps_f = autophase_and_scale_field(FM, 6e6, pz0=0, debug=True)
ps_f(phase_deg2, scale2)
# Use debug mode to visualize. This returns the phasing function
ps_f = autophase_and_scale_field(FM, 6e6, pz0=0, debug=True)
ps_f(phase_deg2, scale2)
Out[19]:
np.float64(5999999.999993903)
In [20]:
Copied!
plist = np.linspace(280, 330, 100)
denergy = np.array([ps_f(p, scale2) for p in plist])
plt.plot(plist, denergy / 1e6)
plt.scatter(phase_deg2, ps_f(phase_deg2, scale2) / 1e6, color="red", label="Autophased")
plt.xlabel("phase (deg)")
plt.ylabel("Voltage (MV)")
plt.legend()
plist = np.linspace(280, 330, 100)
denergy = np.array([ps_f(p, scale2) for p in plist])
plt.plot(plist, denergy / 1e6)
plt.scatter(phase_deg2, ps_f(phase_deg2, scale2) / 1e6, color="red", label="Autophased")
plt.xlabel("phase (deg)")
plt.ylabel("Voltage (MV)")
plt.legend()
Out[20]:
<matplotlib.legend.Legend at 0x7fdd174edfd0>