Simple Normalized Coordinates¶
1D normalized coordinates originate from the normal form decomposition, where the transfer matrix that propagates phase space coordinates $(x, p)$ is decomposed as
$M = A \cdot R(\theta) \cdot A^{-1}$
And the matrix $A$ can be parameterized as
A = $\begin{pmatrix}\sqrt{\beta} & 0\\-\alpha/\sqrt{\beta} & 1/\sqrt{\beta}\end{pmatrix}$
from pmd_beamphysics import ParticleGroup
from pmd_beamphysics.statistics import (
A_mat_calc,
twiss_calc,
normalized_particle_coordinate,
twiss_ellipse_points,
)
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
%config InlineBackend.figure_format = 'retina'
help(A_mat_calc)
Help on function A_mat_calc in module pmd_beamphysics.statistics: A_mat_calc(beta, alpha, inverse=False) Returns the 1D normal form matrix from twiss parameters beta and alpha A = sqrt(beta) 0 -alpha/sqrt(beta) 1/sqrt(beta) If inverse, the inverse will be returned: A^-1 = 1/sqrt(beta) 0 alpha/sqrt(beta) sqrt(beta) This corresponds to the linear normal form decomposition: M = A . Rot(theta) . A^-1 with a clockwise rotation matrix: Rot(theta) = cos(theta) sin(theta) -sin(theta) cos(theta) In the Bmad manual, G_q (Bmad) = A (here) in the Linear Optics chapter. A^-1 can be used to form normalized coordinates: x_bar, px_bar = A^-1 . (x, px)
Make phase space circle. This will represent some normalized coordinates:
theta = np.linspace(0, np.pi * 2, 100)
zvec0 = np.array([np.cos(theta), np.sin(theta)])
plt.scatter(*zvec0)
<matplotlib.collections.PathCollection at 0x7f41fdaf8050>
Make a 'beam' in 'lab coordinates':
MYMAT = np.array([[10, 0], [-3, 5]])
zvec = np.matmul(MYMAT, zvec0)
plt.scatter(*zvec)
<matplotlib.collections.PathCollection at 0x7f41f59296d0>
With a beam, $\alpha$ and $\beta$ can be determined from moments of the covariance matrix.
help(twiss_calc)
Help on function twiss_calc in module pmd_beamphysics.statistics: twiss_calc(sigma_mat2) Calculate Twiss parameters from the 2D sigma matrix (covariance matrix): sigma_mat = <x,x> <x, p> <p, x> <p, p> This is a simple calculation. Makes no assumptions about units. alpha = -<x, p>/emit beta = <x, x>/emit gamma = <p, p>/emit emit = det(sigma_mat)
Calculate a sigma matrix, get the determinant:
sigma_mat2 = np.cov(*zvec)
np.linalg.det(sigma_mat2)
np.float64(637.5000000000003)
Get some twiss:
twiss = twiss_calc(sigma_mat2)
twiss
{'alpha': np.float64(0.6059702963017245), 'beta': np.float64(2.0199009876724157), 'gamma': np.float64(0.6768648603788545), 'emit': np.float64(25.248762345905202)}
Analyzing matrices:
A = A_mat_calc(twiss["beta"], twiss["alpha"])
A_inv = A_mat_calc(twiss["beta"], twiss["alpha"], inverse=True)
A_inv turns this back into a circle:
zvec2 = np.matmul(A_inv, zvec)
plt.scatter(*zvec2)
<matplotlib.collections.PathCollection at 0x7f41f59a5d10>
Twiss parameters¶
Effective Twiss parameters can be calculated from the second order moments of the particles.
This does not change the phase space area.
twiss_calc(np.cov(*zvec2))
{'alpha': np.float64(1.4672219335410167e-16), 'beta': np.float64(1.0), 'gamma': np.float64(1.0000000000000002), 'emit': np.float64(25.24876234590519)}
matplotlib.rcParams["figure.figsize"] = (13, 8) # Reset plot
x_bar, px_bar, Jx, etc.¶
These are essentially action-angle coordinates, calculated by using the an analyzing twiss dict
help(normalized_particle_coordinate)
Help on function normalized_particle_coordinate in module pmd_beamphysics.statistics: normalized_particle_coordinate( particle_group, key, twiss=None, mass_normalize=True ) Returns a single normalized coordinate array from a ParticleGroup Position or momentum is determined by the key. If the key starts with 'p', it is a momentum, else it is a position, and the Intended use is for key to be one of: x, px, y py and the corresponding normalized coordinates are named with suffix _bar, i.e.: x_bar, px_bar, y_bar, py_bar If mass_normalize (default=True), the momentum will be divided by the mass, so that the units are sqrt(m). These are related to action-angle coordinates J: amplitude phi: phase x_bar = sqrt(2 J) cos(phi) px_bar = sqrt(2 J) sin(phi) So therefore: J = (x_bar^2 + px_bar^2)/2 phi = arctan(px_bar/x_bar) and: <J> = norm_emit_x Note that the center may need to be subtracted in this case.
Get some example particles, with a typical transverse phase space plot:
P = ParticleGroup("data/bmad_particles2.h5")
P.plot("x", "px", ellipse=True)
If no twiss is given, then the analyzing matrix is computed from the beam itself:
normalized_particle_coordinate(P, "x", twiss=None)
array([-4.83384094e-04, 9.99855845e-04, 7.35820859e-05, ..., -7.48265408e-05, 4.77803204e-05, -4.18053319e-04], shape=(100000,))
This is equivelent:
normalized_particle_coordinate(
P, "x", twiss=twiss_calc(P.cov("x", "px")), mass_normalize=False
) / np.sqrt(P.mass)
array([-4.83384094e-04, 9.99855845e-04, 7.35820859e-05, ..., -7.48265408e-05, 4.77803204e-05, -4.18053319e-04], shape=(100000,))
And is given as a property:
P.x_bar
array([-4.83384094e-04, 9.99855845e-04, 7.35820859e-05, ..., -7.48265408e-05, 4.77803204e-05, -4.18053319e-04], shape=(100000,))
The amplitude is defined as:
(P.x_bar**2 + P.px_bar**2) / 2
array([1.16831464e-07, 5.85751290e-07, 3.26876597e-07, ..., 3.25916448e-07, 2.21097253e-07, 2.73364174e-07], shape=(100000,))
This is also given as a property:
P.Jx
array([1.16831464e-07, 5.85751290e-07, 3.26876597e-07, ..., 3.25916448e-07, 2.21097253e-07, 2.73364174e-07], shape=(100000,))
Note the mass normalization is the same:
P.Jx.mean(), P["mean_Jx"], P["norm_emit_x"]
(np.float64(4.883790120292462e-07), np.float64(4.883790120292462e-07), np.float64(4.881047605716572e-07))
This is now nice and roundish:
P.plot("x_bar", "px_bar")
Jy also works. This gives some sense of where the emittance is larger.
P.plot("t", "Jy")
Sort by Jx:
P = P[np.argsort(P.Jx)]
Now particles are ordered:
plt.plot(P.Jx)
[<matplotlib.lines.Line2D at 0x7f41f038a5d0>]
This can be used to calculate the 95% emittance:
P[0 : int(0.95 * len(P))]["norm_emit_x"]
np.float64(3.739994010794135e-07)
Plot ellipse¶
For convenience this function is available
x, p = twiss_ellipse_points(sigma_mat2, n_points=100)
plt.plot(x, p, color="red")
plt.scatter(x, p, color="red")
<matplotlib.collections.PathCollection at 0x7f41f07c8410>
Simple 'matching'¶
Often a beam needs to be 'matched' for tracking in some program.
This is a 'faked' tranformation that ultimately would need to be realized by a focusing system.
def twiss_match(x, p, beta0=1, alpha0=0, beta1=1, alpha1=0):
"""
Simple Twiss matching.
Takes positions x and momenta p, and transforms them according to
initial Twiss parameters:
beta0, alpha0
into final Twiss parameters:
beta1, alpha1
This is simply the matrix ransformation:
xnew = ( sqrt(beta1/beta0) 0 ) . ( x )
pnew ( (alpha0-alpha1)/sqrt(beta0*beta1) sqrt(beta0/beta1) ) ( p )
Returns new x, p
"""
m11 = np.sqrt(beta1 / beta0)
m21 = (alpha0 - alpha1) / np.sqrt(beta0 * beta1)
xnew = x * m11
pnew = x * m21 + p / m11
return xnew, pnew
Get some Twiss:
T0 = twiss_calc(P.cov("x", "xp"))
T0
{'alpha': np.float64(-0.7756418199427733), 'beta': np.float64(9.761411505651415), 'gamma': np.float64(0.16407670467707158), 'emit': np.float64(3.127519925999214e-11)}
Make a copy and maniplulate:
P2 = P.copy()
P2.x, P2.px = twiss_match(
P.x, P.px / P["mean_p"], beta0=T0["beta"], alpha0=T0["alpha"], beta1=9, alpha1=-2
)
P2.px *= P["mean_p"]
twiss_calc(P2.cov("x", "xp"))
{'alpha': np.float64(-1.9995993293102663), 'beta': np.float64(9.00102737307016), 'gamma': np.float64(0.5553141070021174), 'emit': np.float64(3.12716295233219e-11)}
This is a dedicated routine:
def matched_particles(
particle_group, beta=None, alpha=None, plane="x", p0c=None, inplace=False
):
"""
Perfoms simple Twiss 'matching' by applying a linear transformation to
x, px if plane == 'x', or x, py if plane == 'y'
Returns a new ParticleGroup
If inplace, a copy will not be made, and changes will be done in place.
"""
assert plane in ("x", "y"), f"Invalid plane: {plane}"
if inplace:
P = particle_group
else:
P = particle_group.copy()
if not p0c:
p0c = P["mean_p"]
# Use Bmad-style coordinates.
# Get plane.
if plane == "x":
x = P.x
p = P.px / p0c
else:
x = P.y
p = P.py / p0c
# Get current Twiss
tx = twiss_calc(np.cov(x, p, aweights=P.weight))
# If not specified, just fill in the current value.
if alpha is None:
alpha = tx["alpha"]
if beta is None:
beta = tx["beta"]
# New coordinates
xnew, pnew = twiss_match(
x, p, beta0=tx["beta"], alpha0=tx["alpha"], beta1=beta, alpha1=alpha
)
# Set
if plane == "x":
P.x = xnew
P.px = pnew * p0c
else:
P.y = xnew
P.py = pnew * p0c
return P
# Check
P3 = matched_particles(P, beta=None, alpha=-4, plane="y")
P.twiss(plane="y"), P3.twiss(plane="y")
({'alpha_y': np.float64(0.9058122605337396), 'beta_y': np.float64(14.683316714787708), 'gamma_y': np.float64(0.12398396674913406), 'emit_y': np.float64(3.214301173354259e-11), 'eta_y': np.float64(-0.0001221701145704683), 'etap_y': np.float64(-3.1414468851691344e-07), 'norm_emit_y': np.float64(5.016420871376572e-07)}, {'alpha_y': np.float64(-3.9999679865267384), 'beta_y': np.float64(14.683316715010363), 'gamma_y': np.float64(1.1577591237176261), 'emit_y': np.float64(3.214301173290241e-11), 'eta_y': np.float64(-0.00012217012301264445), 'etap_y': np.float64(-4.113188244396527e-05), 'norm_emit_y': np.float64(5.016420871359935e-07)})
These functions are in statistics:
from pmd_beamphysics.statistics import twiss_match, matched_particles