openPMD beamphysics examples¶
from pmd_beamphysics import ParticleGroup
# Nicer plotting
import matplotlib
import matplotlib.pyplot as plt
matplotlib.rcParams["figure.figsize"] = (8, 4)
Basic Usage¶
P = ParticleGroup("data/bmad_particles2.h5")
P
<ParticleGroup with 100000 particles at 0x7fa45c5e1be0>
P.energy
array([8.00032916e+09, 7.97408124e+09, 7.97338447e+09, ..., 7.97531701e+09, 7.97163591e+09, 7.97170403e+09], shape=(100000,))
P["mean_energy"], P.units("mean_energy")
(np.float64(7974939710.08345), pmd_unit('eV', 1.602176634e-19, (2, 1, -2, 0, 0, 0, 0)))
P.where(P.x < P["mean_x"])
<ParticleGroup with 50082 particles at 0x7fa408c37890>
P.plot("x", "px", figsize=(8, 8))
P.write_elegant("elegant_particles.txt", verbose=True)
writing 100000 particles to elegant_particles.txt
ParticleGroup class¶
x positions, in meters
P.x
array([-1.20890504e-05, 2.50055966e-05, 1.84022924e-06, ..., -1.87135206e-06, 1.19494768e-06, -1.04551798e-05], shape=(100000,))
relativistic gamma, calculated on the fly
P.gamma
array([15656.25360091, 15604.88770751, 15603.52414494, ..., 15607.30605 , 15600.10231189, 15600.23561808], shape=(100000,))
Both are allowed
len(P), P["n_particle"]
(100000, 100000)
Basic Statistics¶
Statistics on any of these. Note that these properly use the .weight array.
P.avg("gamma"), P.std("p")
(np.float64(15606.567683387444), np.float64(7440511.955100455))
Covariance matrix of any list of keys
P.cov("x", "px", "y", "kinetic_energy")
array([[ 3.05290090e-10, 1.93582323e-01, 2.14462846e-12, -3.94841065e+00], [ 1.93582323e-01, 3.26525376e+08, -2.44058325e-05, -5.36815277e+08], [ 2.14462846e-12, -2.44058325e-05, 4.71979014e-10, -8.48100957e-01], [-3.94841065e+00, -5.36815277e+08, -8.48100957e-01, 5.53617715e+13]])
These can all be accessed with brackets. sigma_ and mean_ are also allowed
P["sigma_x"], P["sigma_energy"], P["min_y"], P["norm_emit_x"], P["norm_emit_4d"]
(np.float64(1.7472465109340715e-05), np.float64(7440511.939853717), np.float64(-0.00017677380499644412), np.float64(4.881047605716572e-07), np.float64(2.4484888408674914e-13))
Covariance has a special syntax, items separated by __
P["cov_x__kinetic_energy"]
np.float64(-3.9484106461190636)
n-dimensional histogram. This is a wrapper for numpy.histogramdd
H, edges = P.histogramdd("t", "delta_pz", bins=(5, 10))
H.shape, edges
((5, 10), [array([5.16387938e-06, 5.16387943e-06, 5.16387948e-06, 5.16387953e-06, 5.16387958e-06, 5.16387963e-06]), array([-24476455.61834908, -17729298.92490654, -10982142.231464 , -4234985.53802147, 2512171.15542107, 9259327.8488636 , 16006484.54230614, 22753641.23574867, 29500797.92919121, 36247954.62263375, 42995111.31607628])])
Slice statistics¶
ParticleGroup can be sliced along one dimension into chunks of an equal number of particles. Here are the routines to create the raw data.
ss = P.slice_statistics("norm_emit_x")
ss.keys()
dict_keys(['mean_t', 'ptp_t', 'charge', 'norm_emit_x', 'current'])
Multiple keys can also be accepted:
ss = P.slice_statistics("norm_emit_x", "norm_emit_y", "twiss")
ss.keys()
dict_keys(['charge', 'norm_emit_x', 'mean_t', 'norm_emit_y', 'twiss', 'ptp_t', 'twiss_alpha_x', 'twiss_beta_x', 'twiss_gamma_x', 'twiss_emit_x', 'twiss_eta_x', 'twiss_etap_x', 'twiss_norm_emit_x', 'twiss_alpha_y', 'twiss_beta_y', 'twiss_gamma_y', 'twiss_emit_y', 'twiss_eta_y', 'twiss_etap_y', 'twiss_norm_emit_y', 'current'])
Note that for a slice key X
, the method will also calculate mean_X
, ptp_X
, as charge
so that a density
calculated from these. In the special case of X=t
, the density will be labeled as current
according to common convention.
Advanced statisics¶
Twiss and Dispersion can be calculated.
These are the projected Twiss parameters.
TODO: normal mode twiss.
P.twiss("x")
{'alpha_x': np.float64(-0.7764646310859605), 'beta_x': np.float64(9.758458404204259), 'gamma_x': np.float64(0.16425722762079686), 'emit_x': np.float64(3.1255806600595395e-11), 'eta_x': np.float64(-0.0005687740085942673), 'etap_x': np.float64(-9.69649743612097e-06), 'norm_emit_x': np.float64(4.877958602096921e-07)}
95% emittance calculation, x and y
P.twiss("xy", fraction=0.95)
{'alpha_x': np.float64(-0.765323995145385), 'beta_x': np.float64(9.233496626510156), 'gamma_x': np.float64(0.1717356795249758), 'emit_x': np.float64(2.3954681527227138e-11), 'eta_x': np.float64(-0.0004717155629444416), 'etap_x': np.float64(-1.6006449526750024e-05), 'norm_emit_x': np.float64(3.7384085506205167e-07), 'alpha_y': np.float64(0.9776071851091841), 'beta_y': np.float64(14.39339077533324), 'gamma_y': np.float64(0.13587596132863441), 'emit_y': np.float64(2.342927040318514e-11), 'eta_y': np.float64(-4.3316354305934096e-05), 'etap_y': np.float64(-6.000905618300805e-07), 'norm_emit_y': np.float64(3.6563644309001816e-07)}
This makes new particles:
P2 = P.twiss_match(beta=30, alpha=-3, plane="x")
P2.twiss("x")
{'alpha_x': np.float64(-2.9996935644621994), 'beta_x': np.float64(29.99130803172276), 'gamma_x': np.float64(0.3333686370097817), 'emit_x': np.float64(3.1255806601163326e-11), 'eta_x': np.float64(-0.000997118623912468), 'etap_x': np.float64(-7.944656701598246e-05), 'norm_emit_x': np.float64(4.877958602198468e-07)}
Resampling¶
Particles can be resampled to either scramble the ordering of the particle arrays or subsample.
With no argument or n=0, the same number of particles will be returned:
P.resample()
<ParticleGroup with 100000 particles at 0x7fa408833d20>
With n > 0, particles will be subsampled. Note that this also works for differently weighed particles.
P.resample(1000)
<ParticleGroup with 1000 particles at 0x7fa4088338c0>
P.resample(1000).plot("x", "px", bins=100)
Units¶
Units can be retrieved from any computable quantitiy. These are returned as a pmd_unit type.
(
P.units("x"),
P.units("energy"),
P.units("norm_emit_x"),
P.units("cov_x__kinetic_energy"),
P.units("norm_emit_4d"),
)
(pmd_unit('m', 1, (1, 0, 0, 0, 0, 0, 0)), pmd_unit('eV', 1.602176634e-19, (2, 1, -2, 0, 0, 0, 0)), pmd_unit('m', 1, (1, 0, 0, 0, 0, 0, 0)), pmd_unit('m*eV', 1.602176634e-19, (3, 1, -2, 0, 0, 0, 0)), pmd_unit('(m)^2', 1, (2, 0, 0, 0, 0, 0, 0)))
P.units("mean_energy")
pmd_unit('eV', 1.602176634e-19, (2, 1, -2, 0, 0, 0, 0))
str(P.units("cov_x__kinetic_energy"))
'm*eV'
z vs t¶
These particles are from Bmad, at the same z and different times
P.std("z"), P.std("t")
(np.float64(0.0), np.float64(2.4466662184814374e-14))
Get the central time:
t0 = P.avg("t")
t0
np.float64(5.163879459127423e-06)
Drift all particles to this time. This operates in-place:
P.drift_to_t(t0)
Now these are at different z, and the same t:
P.std("z"), P.avg("t"), set(P.t)
(np.float64(7.334920780350132e-06), np.float64(5.163879459127425e-06), {np.float64(5.163879459127423e-06)})
There is a special key z/c
to divide z
by the speed of light to get units of s
. This key also works with statistics:
P["sigma_z/c"]
np.float64(2.4466662134476153e-14)
P.units("sigma_z/c")
pmd_unit('s', 1, (0, 0, 1, 0, 0, 0, 0))
status, weight, id, copy¶
status == 1
is alive, otherwise dead. Set the first ten particles to a different status.
n_alive
, n_dead
count these
P.status[0:10] = 0
P.status, P.n_alive, P.n_dead
(array([0, 0, 0, ..., 1, 1, 1], shape=(100000,), dtype=int32), 99990, 10)
There is a .where
convenience routine to make selections easier:
P0 = P.where(P.status == 0)
P1 = P.where(P.status == 1)
len(P0), P0.charge, P1.charge
(10, np.float64(2.4999999999999994e-14), np.float64(2.4997499999999996e-10))
Copy is a deep copy:
P2 = P1.copy()
Charge can also be set. This will re-scale the weight array:
P2.charge = 9.8765e-12
P1.weight[0:2], P2.weight[0:2], P2.charge
(array([2.5e-15, 2.5e-15]), array([9.87748775e-17, 9.87748775e-17]), np.float64(9.876499999999997e-12))
Some codes provide ids for particles. If not, you can assign an id.
"id" in P2
False
This will assign an id if none exists.
P2.id, "id" in P2
(array([ 1, 2, 3, ..., 99988, 99989, 99990], shape=(99990,)), True)
Writing¶
import h5py
import numpy as np
newh5file = "particles.h5"
with h5py.File(newh5file, "w") as h5:
P.write(h5)
with h5py.File(newh5file, "r") as h5:
P2 = ParticleGroup(h5)
Check if all are the same:
for key in ["x", "px", "y", "py", "z", "pz", "t", "status", "weight", "id"]:
same = np.all(P[key] == P2[key])
print(key, same)
x True px True y True py True z True pz True t True status True weight True id True
This does the same check:
P2 == P
True
Write Astra-style particles
P.write_astra("astra.dat")
!head astra.dat
5.358867254236e-07 -2.266596025469e-08 2.743173452837e-13 5.432293116193e+02 1.634894200076e+01 7.974939693676e+09 5.163879459127e+03 0.000000000000e+00 1 -1 -1.208904511904e-05 2.743402818288e-05 -5.473095269153e-06 -7.699432808273e+03 1.073320266862e+04 2.538945179648e+07 -1.818989403546e-12 2.500000000000e-06 1 -1 2.500557812617e-05 1.840484451196e-06 -6.071970122807e-06 2.432464253407e+04 -2.207080331882e+03 -8.584659148073e+05 -1.818989403546e-12 2.500000000000e-06 1 -1 1.840224855502e-06 2.319774542484e-05 -1.983837488548e-06 1.761897150333e+04 -4.269379756219e+03 -1.555244938371e+06 -1.818989403546e-12 2.500000000000e-06 1 -1 1.282953228685e-05 2.807375273984e-06 7.759268653990e-06 1.898440718152e+04 -5.303751910566e+03 -2.614389107333e+06 -1.818989403546e-12 2.500000000000e-06 1 -1 3.362374691900e-06 4.796982704111e-06 -1.006752695161e-06 1.012222041635e+04 1.266876546973e+04 -1.818436067077e+06 -1.818989403546e-12 2.500000000000e-06 1 -1 -1.441736363766e-05 7.420644576948e-06 1.697647381418e-06 -8.598453241915e+03 -9.693787540264e+02 -4.437182519667e+06 -1.818989403546e-12 2.500000000000e-06 1 -1 -1.715615894267e-05 -2.489925517264e-05 8.689767207313e-06 -1.817734573652e+04 1.917720905016e+04 -4.674564930124e+05 -1.818989403546e-12 2.500000000000e-06 1 -1 5.700269218746e-06 4.764024833770e-05 2.167342605243e-05 8.662840216364e+03 -7.175141639811e+03 -3.156898311773e+06 -1.818989403546e-12 2.500000000000e-06 1 -1 9.426699454873e-07 -5.785285707147e-06 6.353982932653e-06 -1.498628620111e+04 -1.222058411806e+03 -3.802046580825e+06 -1.818989403546e-12 2.500000000000e-06 1 -1
Optionally, a string can be given:
P.write("particles.h5")
Plot¶
Some plotting is included for convenience. See plot_examples.ipynb for better plotting.
1D density plot¶
P.plot("x")
Slice statistic plot¶
P.slice_plot("norm_emit_x", "norm_emit_y", ylim=(0, 1e-6))
P.plot("z/c", "x")
Any other key that returbs an arrat can be sliced on
P.slice_plot("sigma_x", slice_key="Jx")
2D density plot¶
P.plot("x", "px", ellipse=True)
Optionally the figure object can be returned, and the plot further modified.
fig = P.plot("x", return_figure=True)
ax = fig.axes[0]
ax.set_title("Density Plot")
ax.set_xlim(-50, 50)
(-50.0, 50.0)
Manual plotting¶
import copy
fig, ax = plt.subplots()
ax.set_aspect("equal")
xkey = "x"
ykey = "y"
datx = P[xkey]
daty = P[ykey]
ax.set_xlabel(f"{xkey} ({P.units(xkey)})")
ax.set_ylabel(f"{ykey} ({P.units(ykey)})")
cmap = copy.copy(plt.get_cmap("viridis"))
cmap.set_under("white")
ax.hexbin(datx, daty, gridsize=40, cmap=cmap, vmin=1e-15)
<matplotlib.collections.PolyCollection at 0x7fa435818cd0>
P.plot("delta_z", "delta_p", figsize=(8, 6))
Manual binning and plotting¶
H, edges = P.histogramdd("delta_z", "delta_p", bins=(150, 150))
extent = [edges[0].min(), edges[0].max(), edges[1].min(), edges[1].max()]
plt.imshow(H.T, origin="lower", extent=extent, aspect="auto", vmin=1e-15, cmap=cmap)
<matplotlib.image.AxesImage at 0x7fa408ad9a90>
Splitting¶
It is often useful to split particles along a key dimension for analysis. This method will split into chunks with approximately equal numbers of particles.
P.split(n_chunks=3, key="z")
[<ParticleGroup with 33334 particles at 0x7fa434c8bd90>, <ParticleGroup with 33333 particles at 0x7fa434c8bd20>, <ParticleGroup with 33333 particles at 0x7fa434c89080>]
Fractional split will use weights to partition the particles.
P.fractional_split(fractions=[0.1, 0.9], key="z")
[<ParticleGroup with 10000 particles at 0x7fa434c8bf50>, <ParticleGroup with 80000 particles at 0x7fa434c8bee0>, <ParticleGroup with 10000 particles at 0x7fa434c89ef0>]
This is useful for splitting particles into head, core, and tail parts. Here, the 5% of the charge is in the tail, 90% is in the core, and 5 % is in the head:
for p in P.fractional_split(key="z", fractions=[0.05, 0.95]):
p.plot("z", "energy", bins=100, figsize=(3, 3))
Multiple ParticleGroup in an HDF5 file¶
This example has two particlegroups. This also shows how to examine the components, without loading the full data.
from pmd_beamphysics import particle_paths
from pmd_beamphysics.readers import all_components, component_str
H5FILE = "data/astra_particles.h5"
h5 = h5py.File(H5FILE, "r")
Get the valid paths
ppaths = particle_paths(h5)
ppaths
['/screen/0/./', '/screen/1/./']
Search for all valid components in a single path
ph5 = h5[ppaths[0]]
all_components(ph5)
['momentum/x', 'momentum/y', 'momentum/z', 'momentumOffset/z', 'particleStatus', 'position/x', 'position/y', 'position/z', 'positionOffset/z', 'time', 'timeOffset', 'weight']
Get some info
for component in all_components(ph5):
info = component_str(ph5, component)
print(info)
momentum/x [998 items] is a momentum with units: kg*m/s momentum/y [998 items] is a momentum with units: kg*m/s momentum/z [998 items] is a momentum with units: kg*m/s momentumOffset/z [constant 4.660805218675275e-22 with shape 998] is a momentum with units: kg*m/s particleStatus [998 items] position/x [998 items] is a length with units: m position/y [998 items] is a length with units: m position/z [998 items] is a length with units: m positionOffset/z [constant 0.50013 with shape 998] is a length with units: m time [998 items] is a time with units: s timeOffset [constant 2.0826e-09 with shape 998] is a time with units: s weight [998 items] is a charge with units: C
Cleanup¶
import os
os.remove("astra.dat")
os.remove(newh5file)
os.remove("elegant_particles.txt")